

High-energy observations of Supernova remnants

Stefan Funk - Kavli Institute for Particle Astrophysics and Cosmology

1912 Victor Hess

1949 Enrico Fermi

The best candidates

- Cosmic particle accelerators (X-ray synchrotron suggesting 100 TeV e⁻)
- Prime candidate for Proton acceleration to the knee
 - Energetics: 10% of kinetic energy of SN would suffice
 - Diffusive shock acceleration (prediction: power-law in energy)

The best candidates

- 1) Do shell-type SNRs accelerate protons
- 2) Do they accelerate to the knee (10¹⁵ eV)?
- 3) What fraction of explosion energy is converted to accelerated particles

• Diffusive snock acceleration (prediction: power-law in energy)

.ce

The General Idea

The General Idea

The π⁰-decay bump

- Neutral pion-decay: in the rest-frame of the pion, the two γ rays have 67.5 MeV each (i.e. a line)
- Transforming into the labframe smears the line but keeps it symmetric about 67.5 MeV (in dN/dE)
- Transforming to E² dN/dE destroys symmetry and generates the "bump"

Stecker, 1971

Fig. 7. The secondary π^0 and γ -ray emissivities from the interaction of the local demodulated cosmic ray proton spectrum with unit density of atomic hydrogen

The π⁰-decay bump

• The only smoking gun feature beyond neutrinos

Early indications

• Detection of SNRs interacting with molecular clouds (maser emission)

The best candidates

• IC 443 and W44 are the two brightest SNRs in the Fermi-LAT range

Clear detection of pion-bump

Clear indication of a low-energy "turnover"

Clear detection of pion-bump

- Turnover matches what is expected from pion-decay
- Best-fit Bremsstrahlung model shows less steep decline

Ruling out leptonic scenarios

- Inverse Compton scenario: energetically completely disfavored (need factor 100 higher radiation fields). Also shape not consistent with IC
- Bremsstrahlung (solid): adjust B-field, total number of electrons and density to match observed emission. Spectra < 200 MeV inconsistent.
- Mixed model: Ratio electrons/protons: Kep= 0.01 (dN/dp @ p=1GeVc-1)

Resulting Proton spectrum

$$\frac{dN_p}{dp} \propto p^{-s_1} \left[1 + \left(\frac{p}{p_{\rm br}} \right)^{\frac{s_2 - s_1}{\beta}} \right]^{-\beta}$$

- $s_1 = 2.36 \pm 0.05$, $s_2 = 3.1 \pm 0.1$ (3.5 \pm 0.1) $p_{br} = 239 \pm 74$ (22 \pm 8) $eV c^{-1}$ (for IC 443)
- Below the break: proton spectrum softer than electron spectrum $(s_{1,e} = 1.72)$
- Reason for high-energy break not fully understood
- CR efficiency 1-4%. Strongly depends on assumed density

Further supporting evidence

Daniel Castro, Patrick Slane, Donald C. Ellison, and Daniel J. Patnaude

• In CTB 109, Adding thermal X-ray emission to modeling can break degeneracy between emission scenarios

The unequivocal evidence of hadron acceleration in Tycho's Supernova Remnant

G. Morlino^{1⋆}, D. Caprioli¹†,

¹INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Firenze, Italy

 $E_{\text{max}} = 500 \text{ TeV}$

Next step: constrain cosmic-ray efficiency

- So far done individually
- E.g. RCW 86
- Absence of signal allows to put very stringent limits on CR efficiency (<5%)

Evolution of emission

Evolution of emission

The population of SNRs

- Evolved and interacting SNRs tend to be more luminous than young SNRs
- Young SNRs tend to have harder spectra

Cosmic rays in other Galaxies

- Diffuse emission similar to our own Galaxy observable for close-by galaxies, or those with enhanced star-formation
- Detection of e.g. M82, NGC 253, SMC, LMC, M31
- EGRET: CRs < 10¹⁵ are galactic
- Fermi-LAT: image CR propagation in nearby Galaxies

Abdo et al. 2010

Other Galaxies

- Start to see trend of correlation between GeV γ-ray luminosity and Star formation
- Suggest that CR density is related to star-formation
- Important to estimate contribution of starforming galaxies to Isotropic diffuse emission
- And possibly the starformation history of the Universe ...

CTA

The concept of CTA

• Fraction of "contained events" significantly increases

"Sweet spot" for triggering and reconstruction

The Cherenkov Telescope Array

CTA Reach

- Galactic objects
 - Newly born pulsars and supernova remnants
 - have typical brightness such that HESS etc see only close-by (<10,000 ly away) objects
 - CTA will see **whole** Galaxy

HESS

Summary

- Demonstration that SNRs accelerate cosmic rays
- Observing cosmic ray propagation in our and in nearby galaxies
- Next step: constrain CR efficiencies in population of galactic SNRs
- CTA: determine maximum energy, exquisite angular resolution will enhance our understanding of shock acceleration.